Irreducible Representations for Toroidal Lie-algebras
نویسنده
چکیده
1 Introduction Let G be simple finite dimensional Lie algebra over complex
منابع مشابه
Monomial Irreducible sln-Modules
In this article, we introduce monomial irreducible representations of the special linear Lie algebra $sln$. We will show that this kind of representations have bases for which the action of the Chevalley generators of the Lie algebra on the basis elements can be given by a simple formula.
متن کاملct 2 00 9 Representations of toroidal extended affine Lie algebras
We show that the representation theory for the toroidal extended affine Lie algebra is controlled by a VOA which is a tensor product of four VOAs: a sub-VOA V + Hyp of a hyperbolic lattice VOA, affine ˙ g and sl N VOAs and a Virasoro VOA. A tensor product of irre-ducible modules for these VOAs admits the structure of an irreducible module for the toroidal extended affine Lie algebra. We also sh...
متن کاملA category of modules for the full toroidal Lie algebra . Yuly Billig
Toroidal Lie algebras are very natural multi-variable generalizations of affine Kac-Moody algebras. The theory of affine Lie algebras is rich and beautiful, having connections with diverse areas of mathematics and physics. Toroidal Lie algebras are also proving themselves to be useful for the applications. Frenkel, Jing and Wang [FJW] used representations of toroidal Lie algebras to construct a...
متن کاملPrincipal Vertex Operator Representations For Toroidal Lie Algebras
Vertex operators discovered by physicists in string theory have turned out to be important objects in mathematics. One can use vertex operators to construct various realizations of the irreducible highest weight representations for affine Kac-Moody algebras. Two of these, the principal and homogeneous realizations, are of particular interest. The principal vertex operator construction for the a...
متن کاملClassification of Irreducible integrable modules for toroidal Lie-algebras with finite dimensional weight spaces
The study of Maps (X,G), the group of polynomial maps of a complex algebraic variety X into a complex algebraic group G, and its representations is only well developed in the case that X is a complex torus C. In this case Maps (X,G) is a loop group and the corresponding Lie-algebra Maps (X, ◦ G) is the loop algebra C[t, t]⊗ ◦ G. Here the representation comes to life only after one replaces Maps...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002